
SqlMake
Release 0.3.0

AmvTek developers

Dec 06, 2021

CONTENTS

1 Overview 3
1.1 Who needs SqlMake ? . 3
1.2 Installing SqlMake . 3
1.3 Running the sqlmake CLI . 3

2 Working with SqlMake 5
2.1 Defining dependencies (DEPS) . 5
2.2 Renaming schema elements (VARS) . 6
2.3 Unleashing the power of Jinja templates . 6

3 Invocation of sqlmake 9

4 Indices and tables 11

i

ii

SqlMake, Release 0.3.0

Contents:

CONTENTS 1

SqlMake, Release 0.3.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

1.1 Who needs SqlMake ?

You will benefit from SqlMake if you are confortable with SQL and see the value of defining your sql schemas (tables,
stored functions, indexes, roles. . .) directly in sql and not through an ORM system like the Django ORM, SqlAlchemy
or Hibernate to name a few.

What SqlMake allows you to do is to split your SQL schema accross multiples sql files accurately defining dependencies
which may exist in between such files by mean of special SQL comments. When in need to recreate your database
schema, the sqlmake tool will collect all files resources that composes the schema, parse them and emit the SQL
commands they contain in optimal order so as to respect the dependencies that have been defined.

Once your schema has been split in between several files, it will be very easy to read and maintain. If you archive it in
a version control system like git, subversion or mercurial it will also be very easy to prepare migration scripts.

1.2 Installing SqlMake

Installing the sqlmake CLI tool currently requires you have some familiarities with the way python packages are dis-
tributed. For now sqlmake has been tested only with python 2.7 interpreter.

To install SqlMake and its dependencies using pip, run

pip install SqlMake

1.3 Running the sqlmake CLI

Getting help

sqlmake -h

Compiling a schema from a set of resources

sqlmake --out=myschema.sql path/to/project/folder

3

SqlMake, Release 0.3.0

4 Chapter 1. Overview

CHAPTER

TWO

WORKING WITH SQLMAKE

A SqlMake project consists of files called resources stored in a folder. Every file with .sql extension, in project folder
or subfolders are project resources.

SqlMake allows to add special instructions to a resource file, in a non obtrusive way :

SQL comment line starts with

--

SqlMake instructions starts with

--#

2.1 Defining dependencies (DEPS)

To add dependencies to a resource file you add DEPS instructions at the top of the file. Each DEPS instruction provides
a comma separated list of relative paths to resource files or folder in your project. If you are using folder dependency,
SqlMake will automatically assumes that all the resources it contains are dependencies of the file that defines it.

2.1.1 Dependencies example

Assume the following project structure:

project/
appschema

init.sql
mytable.sql

public
add_extensions.sql
functions.sql

README.txt
roles.sql

So as get the appschema/mytable.sql resource to depends of the appschema/init.sql resource and of all the resources in
the public folder just add the followings DEPS instruction at the top of the mytable.sql file.

--# DEPS: init, ../public

CREATE TABLE t_mytable(
...

5

SqlMake, Release 0.3.0

2.2 Renaming schema elements (VARS)

SqlMake resources maybe used during development as normal SQL file without the help of the sqlmake command. The
VARS instruction allows to define which name maybe redefined when compiling the schema. The sqlmake command
allows to redefine some of the schema name by means of the –def option.

2.2.1 Renaming example

Let’s assume that in file mytable.sql, we want to allows renaming at compilation time the table t_mytable into something
else and also to change table owner amvtek into another role defined by variable schema_owner. A VARS instruction
will be added at the top of the file to make this possible.

--# DEPS: init, ../public
--# VARS: t_mytable, amvtek=owner_role

create table t_mytable(
id integer primary key,

name varchar(80) not null,
...

);

-- set table owner to role amvtek
alter table t_mytable owner to amvtek;

To rename t_mytable into t_othertable and amvtek role into titus, one may use the sqlmake command like so

sqlmake --def t_mytable=t_othertable --def owner_role=titus path/to/mytable.sql

2.3 Unleashing the power of Jinja templates

SqlMake is built on top of the well known Jinja template engine . You may use any of the statements exported by Jinja
such as if/endif, for/endfor embedding those in SQL comment line that starts with

--#

2.3.1 Jinja instruction example

Assumes that when in development we want our example table to be created in schema tests, and that tests shall be
recreated each time we are loading the mytable.sql file in the development database. When compiling the full schema
using sqlmake the commands necessary for this to happen shall not be executed.

A simple Jinja conditional block, will make this a snapp :

--# DEPS: init, ../public
--# VARS: t_mytable, amvtek=owner_role

--# if __development__ :

(continues on next page)

6 Chapter 2. Working with SqlMake

http://jinja.pocoo.org/docs/

SqlMake, Release 0.3.0

(continued from previous page)

-- sqlmake will not render this block
-- as long as __development__ stays undefined...

drop schema if exists tests;
create schema tests;
set search_path to tests, public;

--# endif

create table t_mytable(
id integer primary key,

name varchar(80) not null,
...

);

-- set table owner to role amvtek
alter table t_mytable owner to amvtek;

2.3. Unleashing the power of Jinja templates 7

SqlMake, Release 0.3.0

8 Chapter 2. Working with SqlMake

CHAPTER

THREE

INVOCATION OF SQLMAKE

usage: sqlmake [-h] [-d name=value] [--out OUTFILE] [--ext EXT] IPATH

build a SQL schema from a set of files

positional arguments:
IPATH path to folder or file that contains schema

definitions

optional arguments:
-h, --help show this help message and exit
-d name=value, --def name=value

list variable definition as name=value
--out OUTFILE file in which SQL will be saved (default -)
--ext EXT file extension for schema resources (default sql)

9

SqlMake, Release 0.3.0

10 Chapter 3. Invocation of sqlmake

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11

	Overview
	Who needs SqlMake ?
	Installing SqlMake
	Running the sqlmake CLI

	Working with SqlMake
	Defining dependencies (DEPS)
	Dependencies example

	Renaming schema elements (VARS)
	Renaming example

	Unleashing the power of Jinja templates
	Jinja instruction example

	Invocation of sqlmake
	Indices and tables

